skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kodama, Kenneth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore time series of magnetic susceptibility (χ) and anhysteretic remanent magnetization (ARM) in settings of rapid sediment accumulation rate (SAR) with the goals of partitioning exogenic forcings from autogenic processes and to better understand how these magnetic signals are encoded in sedimentary archives. Environmental signals of periodic external forcings commonly operate at Milankovitch frequencies, but in rapid SAR settings autogenic processes including channel avulsions and delta lobe switching both shred high-frequency external forcings, or even impart their own quasi-periodic signals. We measure χ using both a hand-held KT-10 magnetic susceptibility meter and a lab-based Kappabridge KLY-3s, and ARM in the < 2 mm size fraction using a GSD-5 alternating-field and a 2G superconducting magnetometers, with all results mass normalized to SI units. We focus on 40 samples collected at 25 cm intervals from 10 m of propagating foresets in a Gilbert delta of the Provo stage of Lake Bonneville at High Creek, Utah. A luminescence-based age model in this delta establishes a mean SAR of 8 cm/yr and terrestrial cosmogenic nuclide concentrations of both delta sediment and alluvium in the source indicates modern and paleoerosion rates (E) ranging from ~60-100 m/Myr (0.006-0.01 cm/yr). Periodicities of 18 and 33 yrs in the rock magnetic time series are greater than twice the compensation time for these foresets where peaks in χ and ARM are positively correlated with fine-grained matrix. We interpret a positive correlation between E and χ as driven by stripping of soil-mantled hillslopes that harbor greater concentrations of magnetic minerals than the underlying bedrock. The encoding of the environmental signal, here interpreted as autogenic cascading of sediment on foreset surfaces, is primarily set by the SAR and depositional processes, which are decoupled from E. Nevertheless, the strength of the magnetic signal in our sedimentary archive varies with E which can be more widely explored as a E-proxy when locally calibrated. These results offer insight into how to isolate the impact of quasi-periodic tectonic forcings on stratigraphic archives at sub-Milankovitch frequencies, where autogenic processes dominate depositional processes but which also encode critical human-dimension natural hazard information. 
    more » « less
  2. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: Paleosecular variation models for ancient times: Clues from Keweenawan lava flows 
    more » « less
  3. A combined magnetostratigraphy for the Rainstorm Member of the Ediacaran Johnnie Formation was constructed using the sediment accumulation rates determined by rock magnetic cyclostratigraphy for three localities of the Rainstorm Member to provide a high resolution, time-calibrated record of geomagnetic field reversal frequency at a critical time period in Earth history. Two previously reported magnetostratigraphy records from Death Valley, California, the Nopah Range and Winters Pass Hills ( Minguez et al., 2015 ), were combined with new paleomagnetic and cyclostratigraphic results from the Desert Range locality of the Rainstorm Member in south central Nevada, United States . The Johnnie oolite marker bed is at the base of each of the three sections and allows their regional correlation. The Nopah Range and Desert Range localities have similar sediment accumulation rates of ∼5 cm/ka, so their stratigraphic sections can be combined directly. The Winters Pass Hills locality has a higher sediment accumulation rate of 8.4 cm/ka, therefore its stratigraphic positions are multiplied by 0.6 to combine with the Desert Range and Nopah Range magnetostratigraphy. The thermal demagnetization results from the Desert Range locality isolates characteristic remanent magnetizations that indicate two nearly antipodal east-west and shallow directions and a mean paleopole (11.7˚N, 348.4˚E) that is consistent with “shallow” Ediacaran directions. The Desert Range also yields a magnetic susceptibility rock magnetic cyclostratigraphy that records short eccentricity, obliquity, and precession astronomically-forced climate cycles in the Ediacaran. The high-resolution combined magnetostratigraphy with nearly meter-scale stratigraphic spacing (nominally 23 ka, based on the Desert Range sediment accumulation rate), indicates 11 polarity intervals in a cyclostratigraphy-calibrated duration of 849 ka, indicating a reversal frequency of 13 R/Ma. The Rainstorm Member records the Shuram carbon isotope excursion, hence its age is ∼574 Ma. Given the recent cyclostratigraphy-calibrated reversal frequency of 20 R/Ma from the Zigan Formation ( Levashova et al., 2021 ) at 547 Ma, our results show that reversal frequency was high but fluctuated during the Ediacaran. 
    more » « less
  4. Abstract Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic fields overlaps temporally with atmospheric and oceanic oxygenation inferred from numerous geochemical proxies. This concurrence raises the question of whether enhanced H ion loss in a reduced magnetic field contributed to the oxygenation, ultimately allowing diversification of macroscopic and mobile animals of the Ediacara Fauna. 
    more » « less
  5. Abstract Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (~565 Ma) rocks, but the transition to stronger strengths has been unclear. Herein, we present single crystal paleointensity results from early Cambrian (~532 Ma) anorthosites of Oklahoma. These yield a time-averaged dipole moment 5 times greater than that of the Ediacaran Period. This rapid renewal of the field, together with data defining ultralow strengths, constrains ICN to ~550 Ma. Thermal modeling using this onset age suggests the inner core had grown to 50% of its current radius, where seismic anisotropy changes, by ~450 Ma. We propose the seismic anisotropy of the outermost inner core reflects development of a global spherical harmonic degree-2 deep mantle structure at this time that has persisted to the present day. The imprint of an older degree-1 pattern is preserved in the innermost inner core. 
    more » « less
  6. Abstract Basal ice of glaciers and ice sheets frequently contains a well-developed stratification of distinct, semi-continuous, alternating layers of debris-poor and debris-rich ice. Here, the nature and distribution of shear within stratified basal ice are assessed through the anisotropy of magnetic susceptibility (AMS) of samples collected from Matanuska Glacier, Alaska. Generally, the AMS reveals consistent moderate-to-strong fabrics reflecting simple shear in the direction of ice flow; however, AMS is also dependent upon debris content and morphology. While sample anisotropy is statistically similar throughout the sampled section, debris-rich basal ice composed of semi-continuous mm-scale layers (the stratified facies ) possesses well-defined triaxial to oblate fabrics reflecting shear in the direction of ice flow, whereas debris-poor ice containing mm-scale star-shaped silt aggregates (the suspended facies ) possesses nearly isotropic fabrics. Thus, deformation within the stratified basal ice appears concentrated in debris-rich layers, likely the result of decreased crystal size and greater availability of unfrozen water associated with high debris content. These results suggest that variations in debris-content over small spatial scales influence ice rheology and deformation in the basal zone. 
    more » « less